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Abstract

Current methods for learning acoustic representations for Automatic Speech Recog-
nition (ASR) involve either supervised learning, where the labels are given as text
or semi-supervised learning where labels are given as some form of audio feature
to learn representation and then finetuned on a small amount of labelled data.
These methods either require enormous computational time for training or data
labelling time. Therefore, we explore a simpler approach that uses weak labels,
as a proxy for the actual labels, obtained from ASR model trained on another
language. This form of representation learning, therefore requires few labelled
audios for the final finetuning task, if a good representation is learnt initially. We
explore the idea in this research project and show how our experiments compare
to current methods of speech recognition. Also, we show how this can be im-
proved further through empirical studies and serves as a basis for a new line of
supervision in the speech domain. Code for our experiments are available at:
https://github.com/ogunlao/low_res_speech_project

1 Introduction

There has been major advances in recent times in self-supervised learning for images, text, and
particularly, speech. The introduction of the seminal paper on Contrastive Learning [1], ushered in a
wave of different self-supervised methods, giving performances which are on par or even better than
supervised tasks.

However, these methods usually require a large amount of unlabelled data, and a ton of computation
time to achieve good performance. In speech recognition, the current methods of self-supervision
requires predicting the input or features using a form of contrastive learning or autoregressive
prediction of features [2, 3, 4, 5]. In this project, we explore another form of supervision, a weakly-
supervised learning paradigm where phonetic representations of a high resource language is distilled
into a student model to learn a low resource language. In particular, noisy pseudo-labels from a
pretrained automatic speech recognition model, usually in a high resource language, is used to learn
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acoustic representations for a low resource language, thereby eliminating or reducing the use of large
amount of labelled training data.

This project want to answer the question; Can we learn a new language faster if we have previously
learnt another language? This setup is probably more meaningful for very similar languages but we
focus on African Languages in this research project, as many African languages are significantly
low-resourced.

2 Related Work

Contrastive Learning Self-supervised models such as CPC [2], Wave2Vec [3], Wav2Vec2 [4]
have similar setups where the models are trained to contrast between the speech features at different
time steps, which they can then adapt their learned representations to perform downstream tasks like
phoneme classification and speaker classification [6], and automatic speech recognition (ASR) [3, 4].
These acoustic features learnt have also been shown to transfer well to other languages, as in [6]. The
commonly used features for supervision are mel-spectrogram, mel-frequency spectral coefficients
(MFCCs) and raw audio.

Autoregressive Learning Other similar tasks like Time Contrastive Learning [7] and Autoregres-
sive Predictive Coding (APC) [5] have been used to learn acoustic representations for ASR where
future time-steps are predicted from current ones. It was also very successful in autoregressive
generation of audio sounds [8, 9]

Multimodal Learning Representations can be learnt by combining actions or information from
different modalities such as speech, text, image or video. This paradigm is common in the text/image
domain. In speech literature for instance, Rahma et al.[10] combined audio and visual information of
lips movements in a weakly supervised way using Siamese networks and lexical same-different side
information to learn acoustic features.

3 Weak Supervision

Consider a set of N i.i.d observations D1 = {(xi, yi)}Ni=1 defined over X×Y domains, where in this
case, X is a set of speech and Y is a set of weak-labels. Similarly, there is a set of M observations
from D2 = {(xj , yj)}Mi=1 still defined over X × Z domains, where xjs are still samples from X ,
and yjs are labels, for the final task. In practice, samples from D1 are more abundant in nature and
helps to augment the few samples we have from D2, hence, the setup is to transfer information as
much as possible from the first task to the second.

Figure 1: Diagram showing how weak supervision can be applied to learn good representations. The
first task is to train a model on weak labels using a good criteria that puts into consideration the
limitations of the labels and then finally finetune this model on the final task.

Here, a parameterized function fθ(x) is first learnt by converting the weak-label classification
problem to a supervised learning task as shown in Figure 1. In this task, predicted weak-labels
ŷi which are gotten through, ŷi = fθ(xi) are compared with the ground-truth weak labels yi by
computing a learning criteria, while the model continues to refine the parameterized function through
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an optimization process such as gradient descent. The criteria depends on diffent properties of the
setup such as input-output type, alignment between input and output, nature of labels etc.

Afterwards, the parameterized function fθ(x) is then refined using observed samples from D2 =

{(xj , yj)} for a small number of iterations to arrive at f
′

θ(x) for the final task, assuming the represen-
tations learnt at the initial training stage is good. The output at this stage correspond to the true labels,
and the criteria for model performance also depends on the the final task. The two tasks can also be
jointly performed through a multi-task learning approach to ensure that this representation satisfy
the two conditions. Common criteria used for learning include Cross entropy loss, Connectionist
temporal classification criterion (CTC) [11] and Auto-segmentation criterion (ASG) [12].

Weak labels can be words, subwords, characters, phonemes, phones, images, speech or text which
have a direct or indirect relation to the input signal. For our task, the weak labels are phonemes and
labels are characters/text which is to be used for Automatic Speech Recognition. Both of our weak
labels and labels in this task do not have direct alignment with the input speech, therefore we are
limited in the kind of criteria to use in learning. The following subsection explains our setup for the
weak supervision task.

3.1 Training Pipeline

We propose to explore the fact that phones in many languages sound similar [13]. This is even more
factual with languages from the same family like English and French. For instance, more than 45%
of words in English are borrowed words from the French language [14]. This implies that an acoustic
model which has learnt french should transfer well to English and vice-versa. Our preliminary studies
also showed this pattern.

Let’s denote the high resource language as LangH and low-resourced language as LangL. Let us also
represent the model pretrained on high resource language as ModelH and the model to be distilled
with information from LangH as ModelL. Our setup is then as follows;

1. Generate predictions: Generate predictions for unlabelled speech in LangL using ModelH.
These predictions, termed pseudo-labels clearly look like text in LangH but when read
aloud will sound similar to the audio in LangL. We select the sequence of characters which
maximize the posterior probability for the input feature as pseudo-labels. We call this
max-decoding

2. Phonemize: Break down pseudo-labels to more informative units like phonemes or bigrams.
In our experiments, we convert the pseudo-labels to phonemes in LangH, as we do not know
of any direct phoneme conversion between the languages, and moreso, phonemizers are not
currently available in our target African languages

3. Distill ModelL: A new model, ModelL, is trained using the unlabelled speech audio from
LangL and their corresponding weak labels, phonemes in this case

4. Finetune ModelL: The model is finetuned on a small amount of labelled data in LangL.
5 hrs or 10 hrs of labelled data was used in our experiments. Also, the model encoder can
be frozen while only the decoder is finetuned however we do not freeze the encoder in our
setup.

Examples of pseudolabels generated using an English pretrained model for French and Kinyarwanda
languages are shown in the following paragraphs. Figure 2 shows the training setup used in our
experiments.

French
Label: L’endroit est recouvert de goyaviers et d’acacias non endémiques
Pseudolabel: along the warld ihokuria deguya yi ite kasia nonamu

Label: Cette espèce est nommée en l’honneur d’Erich Titschack
Pseudolabel: setespice is ne mio muel derich techarch

Label: Il est le fils cadet de Teimouraz de Kakhétie et de Khorassan-Daredjan de Karthli
Pseudolabel: lil fhi cedied til wast catesi it kolasan daijanika

Label: Il a participé à la guerre de succession d’Espagne
Pseudolabel: ela participerior the other success of his panun
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Figure 2: Training setup for weak supervised learning task. (1) Generate pseudolabels from ModelH
using LangL speech audio. (2) Phonemize the pseudolabels. (3) Train a new model (initialized
with ModelH encoder or randomly initialized) on phonemes. (4) Finally, finetune ModelL on small
amount of LangL speech audio with text

Kinyarwanda
Label: ati birashimishije nta muntu utatera inkunga iki gikorwa kandi kubufatanye bwacu twembi
tuzabigeraho
Pseudolabel: airerashuishanamatatere o iuikorakanikufatee gauweuuzaera

Label: ibyo bikoresho ngo bikoresha ingufu nke ubikoresha arabyikanikira iyo byangiritse biraramba
kandi byoroshye kubitwara
Pseudolabel: bikoreshoa ikoreshuguiyku karesharaaraikanicayo anisriraaaaniie wa

Label: kwitabira ibikorwa bya leta ni inshingano za buri mutura rwanda
Pseudolabel: kwtaireko kaukwayare tanishn a zarima

3.2 Model Architecture

The models comprise of an encoder layer and a decoder layer. The encoder encodes the speech
into a latent vector, which is then converted to labels by the decoder. We adopt a Jasper10x5 model
architecture [15], containing 10 blocks of convolutional layers and residual connections, with each
block having 5 repeating sub-blocks. Each sub-block applies the following operations in sequence:
1D-Convolution, Batch Normalization, ReLU activation, and Dropout. The structure of the residual
blocks and sub-blocks is shown in Figure 3.

Jasper is a computationally efficient end-to-end convolutional neural network acoustic model, which
achieved competitive results on Librispeech dataset [16]. It takes spectrogram features as input and
produces a sequence of character outputs. Jasper10x5 contains 333 million parameters. The same
model architecture was used for ModelH and ModelL in our experiments, however a different model
architectures can be used as ModelL. The experiments were setup using the NeMO conversational AI
library1 from Nvidia.

3.3 Loss/Criteria

The Connectionist Temporal Classification (CTC) criteria [11] was used in both the phoneme classifi-
cation and fine-tuning experiments. This criteria maximises the joint probability between all possible
paths to a particular sequence, and has been explored in many sequence-to-sequence tasks where the
input and target require no explicit alignments [17, 18, 19].

In the pretraining stage, the model maximises the probability of getting a sequence of weak labels,
given the input,

Y = argmax
y

P (y1, y2, ..., yn|x1, x2, ..., xm; θ)

1https://github.com/NVIDIA/NeMo
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Figure 3: Jasper BxR model: B - number of blocks, R - number of sub-blocks. [15]

where n ̸= m. Afterwards, we finetune the model, ModelL on labels. All of our experiments were
performed using max-decoding without language model or beam search.

4 Training Setup

All audio files were converted to wav, mono-channel, 16bit format with a sampling rate of 16kHz.
This format ensures compatibility with NeMo and used extensively in most ASR applications.

4.1 Pretraining

Data size 100 hours of unlabelled speech in two African languages, Kinyarwanda and Kabyle was
used in our experiments. It should also be possible to very small amount of unlabelled data in this
setup. More details about the datasets are given in section 5.

Generating Pseudo-labels Audio samples are processed and passed through ModelH, thereby
getting predictions at the output as sequence of characters or pseudo-labels in LangH. Due to a lack
of language model, the length of some pseudo-labels appear shorter than the speech sample text or
even empty. So, these samples are filtered out and eliminated if their predictions are empty or has
only one character. Another approach could be to estimate the length of the label given the audio,
then use this information to filter out improbable pseudo-labels.

Converting Pseudo-labels to Phonemes We phonemize the sequence of characters using the
bootphon phonemizer2 with festival backend. Festival[20] uses a custom American English phoneme
set and allows tokenization at the syllable level and word level. The custom phoneme set, comprising
of 41 phonemes, can be found in the link3.

2https://github.com/bootphon/phonemizer
3http://www.festvox.org/bsv/c4711.html
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Figure 4: Distribution of phonemes in pseudolabels and labels in Kinyarwanda using the bootphon
phonemizer

Phonemes with multiple characters are mapped to single ASCII characters for the training task and
a silence token is also included between each word generated in the pseudo-label. A sequence of
characters are taken as a word if there is an empty character token between the sequence and the next
sequence. An approximate distribution of phonemes generated to phonemes of actual labels is shown
in Figure 4.

The phoneme distribution follows the distribution of the original labels closely.

Evaluation The pretraining task was evaluated on a validation set using the Phone Error Rate
(PER).

4.2 Finetuning

Data size Finetuning experiments were carried out with 5 and 10 hours of labelled speech in LangL.
The smaller dataset is made to be a subset of the larger dataset.

Preprocessing All sentences are cleaned by removing all standard punctuation like full stop,
commas, etc. except the apostrophe. For Kabyle, we also include the hyphen punctuation as it was a
common character in the dataset and may contain extra information about word composition. Accents
on characters were as well removed in order to have a substantial frequency count for the characters
without impeding readability of sentences.

Evaluation The finetuned model, ModelL is evaluated on a validation and test set using Character
Error Rate (CER).

5 Experimental Evaluation

Model A pretrained Jasper10x5 model4 was the selected model for pseudolabel generation. This
ASR model was trained on 7 different datasets of English speech, with a total of 7,057 hours of audio
samples. For our experiments, we either train on the pseudolabels, initializing with weights of this
pretrained model or train with random model initialization. We also randomly initialize the decoder
during all finetuning experiments, irrespective of the encoder weights, since the length of vocabulary
in the pretrained model will not match the length of vocabulary for the target language.

Datasets Experiments were performed with two African Languages, Kinyarwanda (KW) and
Kabyle (KB). Kinyarwanda is a language of Niger-congo family predominantly spoken in Rwanda,
Uganda, DR Congo, Tanzania. It uses Latin characters. Kabyle is a language of Afro-Asiatic family,
spoken majorly in the northern part of Algeria. All datasets were sourced from the Common Voice
Corpus 6.1 [21].

4https://ngc.nvidia.com/catalog/models/nvidia:nemo:stt_en_jasper10x5dr
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To segment the audio samples, the samples were converted from their original mp3 format to wav
format, then random samples of speech totalling 100 hours duration was selected for pretraining
while other disjoint random samples of 10 hours and 5 hours were selected for finetuning, from
the same training set. We use the predefined development set and test set for validation and testing
respectively. KW dataset consist of 24 hours of development and test sets while KB dataset comprise
of 14 hours of development and test sets respectively.

Hyperparameters A similar hyperparameter configuration was used for all experiments involving
Jasper (except where stated otherwise). Stochastic Gradient Descent (SGD) with momentum and
Cosine Annealing scheduler with linear warmup ratio of 1e-1 was used for learning. A base learning
rate of 1e-4 for pseudolabel training and 1e-4 for finetuning ModelL was set for the experiments.
The best model found during training based on the validation CER is saved and evaluated on the
test set. Also, we setup our experiments on 4 or 8 Nvidia V100 GPUs depending on data size. The
pseudolabel training took 3 days, while the finetuning took a day on average on 4 gpus.

For data augmentation, SpecAugment [22] and CutOut, [23] with time mask of 120, frequency mask
of 50 and rectangular mask of 5, are applied on the spectrogram during finetuning. For pretraining,
models without data augmentation were also considered, since the labels are noisy and further
regularization via data augmentation may not be necessary. In our experiments, models with data
augmentation gave better results. All other configurations are similar to the configurations used to
train Jasper10x5 on the English ASR task.

5.1 Results

Firstly, we train some baselines to determine how our approach compares to other direct ASR
approaches. The two baselines considered are in section 5.1.1

5.1.1 Baselines

a. Train a randomly initialized model on 5 hours and 10 hours of LangL

b. Finetune Jasper initialized with weights from ModelH on 5 hours and 10 hours of LangL

As seen in Table 2, finetuning a pretrained model (setup b) performs significantly better than training a
randomly initialized model. This is a well-known phenomenon in deep learning, which is suitable for
transfer learning. Afterwards, subsequent experiments explored phoneme classification pretraining to
determine the influence of learned representations from phonemes on the final ASR task.

5.1.2 Our method

Pretrain without Data Augmentation These set of experiments do not use any form of augmenta-
tion such as time masking, frequency masking or cutout on the audio features. ModelL encoder is
either initialized from a pretrained English model i.e ModelH encoder or train ModelL on phonemes
directly. It is worth mentioning that these experiments follow those described in section 5.1.1 and the
results of the phoneme classification are shown in Table 1. In the tables, the setup tags correspond to
the experiment numbers with 1 indicating phoneme classification task and 2 indicating finetuning
task.

c. Randomly initialize model, train on phonemes, then finetune on 10 hours and 5 hours of
labelled data

d. Initialize with Jasper-Eng ASR, train on phonemes, then finetune on 10 hours and 5 hours
of labelled data
The best method between the two setups above are selected for further studies. Also, since
the labels are noisy, the validation set may not be a true generalization criteria for our
approach, therefore this take had to be explored in subsequent experiments.

e. Randomly initialize model, train on phonemes, then finetune on 10 hours and 5 hours of
labelled data, returning the model with best train loss. stopping when the train loss stagnates.

f. Randomly initialize model, train a phoneme classifier with augmentation until train loss
degrades, then finetune model on 10 hours and 5 hours of labelled data
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Table 1: PER of train and validation sets for phoneme classification of 100 hours of Kinyarwanda
and Kabyle. Lower PER is better.

KW KB

setup train PER val PER train PER val PER

c-1 0.4276 0.5483 - -
d-1 0.4924 0.5528 - -
e-1 0.2098 - - -
f-1 0.2554 - 0.4629 0.5153

Table 2: CER of ModelL finetuned on 10 hours and 5 hours of Kinyarwanda labelled data. Lower
CER is better.

10 hrs KW 5hrs KW 10 hrs KB 5hrs KB

setup val CER test CER val CER test CER val CER test CER val CER test CER

a 0.3489 0.3813 0.4398 0.4640 0.3177 0.3364 0.4115 0.4262
b 0.2124 0.2507 0.2396 0.2747 0.2089 0.2112 0.2179 0.2284
c-2 0.3306 0.3665 0.3828 0.4116 - - - -
d-2 0.3409 0.3743 0.3924 0.4225 - - - -
e-2 0.3273 0.3621 0.3811 0.4124 - - - -
f-2 0.3120 0.3484 0.3725 0.4055 0.2936 0.3112 0.3497 0.3667

An empirically observation is that there is an improvement in our results when the model trains
longer on the training set, instead of early stopping where the loss on the validation set was no longer
improving. In reality, the model could not essentially overfit the training data, as it is very noisy, and
this is indicated by the high train PER.

Pretrain with Data Augmentation We further include data augmentation in the pretraining loop to
evaluate its effect on the task. The PER was slightly higher than the experiment without augmentation,
but it still performed better on the final finetuning task than previous approaches. This may be because
the finetuning task also used the same augmentation strategy as used during phoneme classification,
without any augmentation mismatch. Table 1, setup (f-1) shows the result for this experiment.

5.2 Interpreting Results after Finetuning

For our task, we finetuned all pretrained models on 5 hours and 10 hours of labelled speech. Table 2
shows the results. Under our approach, we got the best finetuning results when we pretrained with
augmentation and allow the training task to fit the training data, regardless of the validation CER.
Note that for Kabyle, we only run experiments for the baseline and the best experiment results found
during the Kinyarwanda task.

All our approach performed better than training a randomly initialized model from scratch, however
we perform far worse than an English pretrained model, directly finetuned with labelled speech.
This might be indicative of a breakdown in acoustic features during our phoneme classification, or
phoneme-character mismatch for the final task. We would have expected to performed at least as
good as a pretrained model, or even better. Also, we discovered that it is better to pretrain a randomly
initialized model for our task than initializing with a pretrained model for the phoneme classification
task.

Finally, finding the most appropriate learning rate for this task proved difficult as we initially got
worse results for most of the experiments with high learning rates. Our approach even performed
significantly better than the English pretrained model at high learning rates.
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6 Discussions, Limitations and Future Work

6.1 Discussions and Limitations

In this project, a weakly supervised learning framework for learning representations was explored
particularly for African languages, however the results showed that more work need to be done in this
line of research to be fully competitive with current approaches. It was discovered through empirical
evaluations that the pseudo-labels were very noisy, thereby degrading the performance of the acoustic
model. We believe with further experiments, and probing, we can perform knowledge distillation
using weak labels, significantly reducing the burden of labelling audio for future ASR tasks.

6.2 Future Work

For future work, we intend to explore other criteria for the pseudo-label training. In particular, we
will explore loss functions that can handle noisy labels optimally. Another idea is to convert weak
labels to other informative forms for training. We can also generate pseudo-labels conditioned on the
probability distribution of predictions of a language model either in the source or target language, to
help improve the pseudo-label prediction. We hope that these modifications can help improve on the
results presented in this paper.

7 Acknowledgements

We acknowledge Fadel Thior and Ahmed Hassan for their help in setting up some of our experiments.
Also, initial discussions with Sai Krishna provided useful insights into how to proceed in this line of
research.

References
[1] Aaron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning.

arXiv preprint arXiv:1711.00937, 2017.

[2] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. arXiv preprint arXiv:1807.03748, 2018.

[3] Steffen Schneider, Alexei Baevski, Ronan Collobert, and Michael Auli. wav2vec: Unsupervised pre-
training for speech recognition. arXiv preprint arXiv:1904.05862, 2019.

[4] Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework for
self-supervised learning of speech representations. arXiv preprint arXiv:2006.11477, 2020.

[5] Yu-An Chung, Hao Tang, and James Glass. Vector-quantized autoregressive predictive coding. arXiv
preprint arXiv:2005.08392, 2020.

[6] Morgane Rivière, Armand Joulin, Pierre-Emmanuel Mazaré, and Emmanuel Dupoux. Unsupervised
pretraining transfers well across languages. In ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), pages 7414–7418. IEEE, 2020.

[7] Achintya Kumar Sarkar, Zheng-Hua Tan, Hao Tang, Suwon Shon, and James Glass. Time-contrastive
learning based deep bottleneck features for text-dependent speaker verification. Ieee/acm Transactions on
Audio, Speech, and Language Processing, 27(8):1267–1279, 2019.

[8] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal
Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu. Wavenet: A generative model for raw audio.
arXiv preprint arXiv:1609.03499, 2016.

[9] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman Casagrande, Edward Lockhart,
Florian Stimberg, Aaron Oord, Sander Dieleman, and Koray Kavukcuoglu. Efficient neural audio synthesis.
In International Conference on Machine Learning, pages 2410–2419. PMLR, 2018.

[10] Rahma Chaabouni, Ewan Dunbar, Neil Zeghidour, and Emmanuel Dupoux. Learning weakly supervised
multimodal phoneme embeddings. arXiv preprint arXiv:1704.06913, 2017.

9



[11] Alex Graves, Santiago Fernández, Faustino Gomez, and Jürgen Schmidhuber. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning, pages 369–376, 2006.

[12] Ronan Collobert, Christian Puhrsch, and Gabriel Synnaeve. Wav2letter: an end-to-end convnet-based
speech recognition system. arXiv preprint arXiv:1609.03193, 2016.

[13] Damián E. Blasi, Søren Wichmann, Harald Hammarström, Peter F. Stadler, and Morten H. Christiansen.
Sound–meaning association biases evidenced across thousands of languages. Proceedings of the National
Academy of Sciences, 113(39):10818–10823, 2016.

[14] Wikipedia contributors. List of english words of french origin — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=List_of_English_words_of_French_
origin&oldid=1019837089, 2021. [Online; accessed 22-June-2021].

[15] Jason Li, Vitaly Lavrukhin, Boris Ginsburg, Ryan Leary, Oleksii Kuchaiev, Jonathan M Cohen, Huyen
Nguyen, and Ravi Teja Gadde. Jasper: An end-to-end convolutional neural acoustic model. arXiv preprint
arXiv:1904.03288, 2019.

[16] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus based
on public domain audio books. In 2015 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pages 5206–5210. IEEE, 2015.

[17] Alex Graves, Marcus Liwicki, Santiago Fernández, Roman Bertolami, Horst Bunke, and Jürgen Schmid-
huber. A novel connectionist system for unconstrained handwriting recognition. IEEE transactions on
pattern analysis and machine intelligence, 31(5):855–868, 2008.

[18] Alex Graves and Navdeep Jaitly. Towards end-to-end speech recognition with recurrent neural networks.
In International conference on machine learning, pages 1764–1772. PMLR, 2014.

[19] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich Elsen, Ryan Prenger,
Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al. Deep speech: Scaling up end-to-end speech
recognition. arXiv preprint arXiv:1412.5567, 2014.

[20] Paul Taylor, Alan W Black, and Richard Caley. The architecture of the festival speech synthesis system. In
The Third ESCA/COCOSDA Workshop (ETRW) on Speech Synthesis, 1998.

[21] Rosana Ardila, Megan Branson, Kelly Davis, Michael Henretty, Michael Kohler, Josh Meyer, Reuben
Morais, Lindsay Saunders, Francis M Tyers, and Gregor Weber. Common voice: A massively-multilingual
speech corpus. arXiv preprint arXiv:1912.06670, 2019.

[22] Daniel S Park, William Chan, Yu Zhang, Chung-Cheng Chiu, Barret Zoph, Ekin D Cubuk, and Quoc V
Le. Specaugment: A simple data augmentation method for automatic speech recognition. arXiv preprint
arXiv:1904.08779, 2019.

[23] Terrance DeVries and Graham W Taylor. Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552, 2017.

10

https://en.wikipedia.org/w/index.php?title=List_of_English_words_of_French_origin&oldid=1019837089
https://en.wikipedia.org/w/index.php?title=List_of_English_words_of_French_origin&oldid=1019837089

	Introduction
	Related Work
	Weak Supervision
	Training Pipeline
	Model Architecture
	Loss/Criteria

	Training Setup
	Pretraining
	Finetuning

	Experimental Evaluation
	Results
	Baselines
	Our method

	Interpreting Results after Finetuning

	Discussions, Limitations and Future Work
	Discussions and Limitations
	Future Work

	Acknowledgements

